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Abstract:

When a two-dimensional (2D) traveling salesman problem (TSP) is presented on a com-
puter screen, human subjects can produce near-optimal tours in linear time. In this 
study we tested human performance on a real and virtual floor, as well as in a three-
dimensional (3D) virtual space. Human performance on the real floor is as good as 
that on a computer screen. Performance on a virtual floor is very similar, while that in 
a 3D space is slightly but systematically worse. We modeled these results by a graph 
pyramid algorithm. The same algorithm can account for the results with 2D and 3D 
problems, which suggests that deterioration of performance in the 3D space can be 
attributed to geometrical relations between hierarchical clustering in a 3D space and 
coarse-to-fine production of a tour.
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1. Introduction

There have been a number of studies of human performance in the TSP (MacGregor & 
Ormerod, 1996; Graham, Joshi, & Pizlo, 2000; Vickers et al., 2001; Pizlo et al., 2006; Dry et 
al., 2006; Wiener, Ehbauer, & Mallot, 2009). These studies showed that human subjects can 
produce near-optimal tours very quickly. This performance generalizes to other combinato-
rial optimization problems like minimum spanning tree (MST) (Pizlo et al., 2005), shortest 
path (MacGregor, 2005), optimal stopping (Lee, 2005), or 15-puzzle (Pizlo & Li, 2005) (see 
Burns, Lee, & Vickers, 2006 for an overview). Optimization tasks are of importance not only 
in the context of human problem solving. Other cognitive functions like decision making, 
motor control, and perception can also be modeled as optimization tasks. It follows that 
using optimization tasks may be an effective way to study human cognition in general 
and problem solving in particular.

The initial state in the TSP is usually a set of C cities laying on a 2D plane and the 
goal is to find the shortest tour of these cities (see an example of TSP and MST solu-
tions in Figure 1 and the formal definition in Section 3). TSP belongs to the class of 
difficult optimization problems called NP-hard (Johnson & McGeoch, 1997). NP-hard 
means that in the worst case one may have to perform an exhaustive search in order 
to solve the problem. The number of all different tours in a C-city TSP is (C−1)!, and thus 
grows very quickly with C, precluding exhaustive search. It is quite certain that human 
subjects do not search the whole or even substantial parts of the problem space when 
solving combinatorial optimization problems, because of memory and cognitive process-
ing limitations. Many researchers have shown that humans produce close-to-optimal 
solutions to TSP in time that is (on average) proportional to the number of cities (Graham, 
Joshi, & Pizlo, 2000; MacGregor et al., 2000; Pizlo & Li, 2003). This level of performance can-
not be reproduced by any of the standard approximating algorithms in computer science 
or operations research. Some approximating algorithms produce tours with lengths that 
are close to that of the shortest tour, but the time complexity is substantially higher than 
linear. Other algorithms are relatively fast but produce tours that are substantially longer 
than those produced by human subjects.

Figure 1. Examples of combinatorial problems: TSP and MST.

                                    A random instance          TSP tour                   MST solution  
                                           of 25 cities
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The TSP is usually defined as a problem on a 2D Euclidean plane. The positions of 
cities are known accurately and the distances between the cities are Euclidean distances.1 
A problem solver faces a problem to determine the optimal (or nearly-optimal) tour. This 
is the usual experimental setup when human subjects were tested in previous studies 
(MacGregor & Ormerod, 1996; Graham, Joshi, & Pizlo, 2000; Vickers et al., 2001; Pizlo et al., 
2006). The subject is shown the TSP problem on a computer screen, with the subject’s line 
of sight being orthogonal to the screen at the center of the screen (as shown in Figure 
2). When the subject fixates his eye at the center of the screen, the retinal image in the 
subject’s eye is a scaled copy of the image on the computer screen. It follows that an op-
timal tour for the problem on the subject’s retina is also an optimal tour for the problem 
shown on the computer screen. Furthermore, a suboptimal tour with a relative error (ε) 
for the problem on the subject’s retina is a suboptimal tour with the same error for the 
problem on the computer screen (the relative error is defined as the difference between 
the length of the tour produced by the subject and the length of the optimal tour, nor-
malized to the latter; see Section 3.3).

Figure 2. A typical experimental setting for testing human subjects in TSP, where the cities 
are presented on the computer screen.
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This laboratory setting does not generalize to real-life situations. In real life, the 
cities are not necessarily restricted to a plane. Instead, they may reside on a 2D surface 
or in a 3D volume and their distances are almost never known accurately. Furthermore, 
the problem is likely to occupy a large part of the subject’s field of view, rather than the 
central 20 degrees, as in the case of experiments where the problems are shown on a 
computer screen. Consider the task of collecting tennis balls on a tennis court, the task 
tested in our Experiment 1 (see Section 4.1 and Figure 3). The TSP problem in this case 
occupies a large part of the subject’s field of view. In fact, once the subject is in the cen-
ter of the problem space, some parts of the problem are outside of her visual field. She 
cannot see the whole problem at one glance. Furthermore, the subject cannot solve the 

1 L2 norm.
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problem on her retina because the retinal image is a perspective transformation of the 
original problem. In order to estimate the actual distances on the tennis court, the subject 
has to perform back-projection of the retinal image (i.e., reconstruct the positions of the 
tennis balls on the tennis court). Note that even small errors in this estimation will lead 
to large errors in the reconstructed distances on the floor. For example, assume that the 
actual slant is 80 degrees (as it was often the case in our experiment), and that the slant 
is underestimated by 1 degree (this magnitude of error is quite realistic considering the 
accuracy of the visual and vestibular system). This error in estimated slant of perspective 
projection would lead to 10% errors (tan(80 deg)/ tan(79 deg)) in estimating distances 
on the floor. We recently measured subjects’ ability to judge distances between objects 
in a real scene whose dimensions were 5 by 5 meters (Kwon et al., 2010). The resulting 
random errors in judging distances (5-8%) corresponded to the error in the estimated 
slant of the floor of about 1 degree. This means that our assumption about 10% errors is 
quite reasonable. Will these errors impact substantially the quality of the TSP tours? Not 
necessarily, considering the fact that even a large error in estimating individual distances 
may lead to only small errors in the length of a TSP tour. This issue will be discussed in 
some more detail after psychophysical results are presented.

Figure 3. Presentation of cities on the tennis court.
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This tennis court experiment was replicated in a virtual reality room (Purdue’s FLEX, a 
CAVE2-like device as shown in Figure 4). Using the FLEX it is quite easy to place simulated 
tennis balls on the simulated floor or in the 3D volume. The FLEX consists of four screens 
(three walls and the floor). The subject can move within the FLEX by walking. The head 
tracker records the position of the subject and updates the visual information, in order 
to adequately simulate the change of the visual scene. The subject wears goggles that 
provide her with binocular vision.

The paper is structured as follows. After a short section on related works (Section 2), 
we formally define the problem (Section 3) and present psychophysical results (Section 
4) and then the model (Section 5). We also fit the model to the subjects’ data. The paper 
ends with a conclusion section.

2 Cave Automatic Virtual Environment.
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Figure 4. Purdue’s FLEX virtual reality room.
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2. Related Work

The first study on human problem solving in TSP that used pyramid algorithms as models 
of the mental mechanisms was done by Graham and his colleagues (Graham, Joshi, & 
Pizlo, 2000; Pizlo, Joshi, & Graham, 1994). These authors modeled the mental mechanism 
involved in solving the visual version of the E-TSP. It has been shown (Graham, Joshi, & 
Pizlo, 2000; MacGregor et al., 2000) that subjects’ tours are, on average, only few percent 
longer than the shortest (optimal) tours, and the solution time was linearly related to 
the number of cities. Graham, Joshi, and Pizlo (2000) formulated a pyramid algorithm for 
E-TSP motivated by the failure to identify an existing algorithm that could provide a good 
fit to the subjects’ data. More recently, hierarchical algorithms have been used to model 
mental mechanisms involved in other types of visual problems (Pizlo & Li, 2003, 2004; 
Wiener, Ehbauer, & Mallot, 2009) (e.g., 15-puzzle problem, MST, etc.). The main aspects of 
the hierarchical models (Graham, Joshi, & Pizlo, 2000; Pizlo & Li, 2003; Pizlo et al., 2006; 
Haxhimusa et al., 2009) are:

•  multi-resolution pyramid architecture

•  a coarse-to-fine process of successive approximations to the solution

All these models can be summarized as having two types of processes, bottom-up and 
top-down. The bottom-up processes in pyramids can be considered as building the 
problem representation, that is, understanding the problem (Newell & Simon, 1972). The 
solution to the problem is produced by a top-down, coarse-to-fine sequence of search 
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steps in the problem representation. Pyramid algorithms are suitable for problems such 
E-TSP since they solve (approximately) global optimization tasks without performing a 
global search. The computational complexity of these models is very low and similar to 
that characterizing mental processes (i.e., linear or close to linear). At the same time, the 
solutions produced by these models are characterized by similar errors as those produced 
by the subjects.

3. TSP
3.1. Notation

 T:  set of cities

 τ :  tour of T

 l(τ):  length of the tour τ
 τopt:  optimal tour of T found by the optimal solver, and its length l(τopt)

 τpyr :  solution of T by a pyramid model, and its length l(τpyr)

 τ*:  intermediate solution of T, and its length l(τ*)

3.2. Definition of the TSP

Let the cities of the TSP be represented by vertices (c ∈ C ) of the input graph G and the 
intercity neighborhoods by edges (e ∈ N) (see Figure 5b). Each vertex of the input graph 
must have at least two edges for the TSP tour to exist. Moreover, the graph is attributed, 
G = (C, N, wv , we), where we : N →R+ is a weighted function defined on edges N . The 
weights we are distances (e.g., Euclidean) in the TSP and wv : C → RN+ is a weighted func-
tion defined on cities C (e.g., each vertex [city] has as weights its position in the Cartesian 
coordinate system, thus N = 2 for 2D TSP and N = 3 for 3D TSP).

The goal in TSP is to find a nonempty ordered sequence of vertices and edges (v0, 
e1, v1, . . . , vk −1, ek , vk , . . . , v0) over all vertices of G such that all the edges and vertices are 

Figure 5. 2D E-TSP, its graph representation and a TSP tour of a subject.

                a) problem instance        b) graph G        Tour τ of subject ZL 
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distinct, except the start and the end vertex v0. This tour is called optimal tour τopt if its 
length l(τopt) defined as the sum of edge weights is minimal, that is,

l wopt e
e
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∈
∑ min,  (1)

where we is the weight of edge e. In this work we use Euclidean distances between cities as 
weights of the edges. In general, humans and approximation algorithms do not produce 
an optimal tour. Finding the global minimum of Equation 1 (the optimal tour) is a hard 
computational problem (Johnson & McGeoch, 1997).

3.3. Error Definition

The error ε is computed as the ratio of the length of the tour produced by the model (l(τpyr)) 
or by the human subject (l(τh)) and the length of the optimal tour (l(τopt)):
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4. Psychophysical Experiments

4.1. Experiment 1: Real and Virtual 2D Floor

4.1.1. Method

The size of the area in a large hall within which the cities (tennis balls) were placed was 
55 × 55 feet.4 The number of cities, which represents the problem size C, was 5, 10, 20,5 

and 50 (10 randomly generated problems per problem size). The 50-city problems were 
used only in the virtual reality setting. Consider first the problems on the real floor with 
real tennis balls. First, we put labels on the floor producing a regular grid of 12 × 12, with 
step of 5 feet. Each point in this grid had coordinates (i, j ), i, j = 0, · · ·, 11. The color of the 
labels was similar to the color of the floor. As a result, the labels were visible only from a 

3 In this paper we use Concorde algorithm as optimal solver. The implementation of this algorithm 
can be found at www.tsp.gatech.edu/concorde html.
4 Roughly 17 x 17 meters.
5 Exact problems are given in the Appendix.
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very close distance so the subjects could not use them to plan their tour or to estimate 
distances from a larger distance. Before each trial, two experimenters placed the tennis 
balls at the points of the grid representing the city positions. This process took several 
minutes. During this period the subject looked away. At the beginning of each trial, the 
subject stood at the initial position at the midpoint of one of the sides (coordinates 5.5, 
11) of the 55 × 55 square. When the trial started, the subject walked around the hall with 
a bag, collected the tennis balls, and returned to the starting city. The starting city, which 
was the closest city to the initial position, was marked with two tennis balls: one of the 
balls was collected at the beginning of the tour production and the other was collected 
at the end. Without the second tennis ball in the starting city location, the subject would 
not know where the end of the tour is. Without returning to the end, the problem would 
not have been equivalent to a TSP problem. Marking the start position with two ten-
nis balls meant that the subject was told which ball is the start/end city. The decision 
about which city is the start/end of the tour has no effect on the optimal tour. Subjects 
seem to have preferences about where to start solving the problem. It was reasonable 
to assume that in this setup, the subject would start with the tennis ball that is close 
to the initial position. The tour chosen by the subject was recorded in two ways. One 
experimenter had a hard copy of the current problem and was drawing the tour as the 
subject collected the tennis balls. Another experimenter was videotaping the entire 
experiment. The order of problems was random and different for different subjects. 
The actual problems were generated randomly with two constraints. First, the city 
locations were restricted to the positions of the 12 × 12 grid. Second, from several 
hundred problems, we chose those whose optimal solutions changed maximally when 
the problems were compressed along the y-axis by a factor of 2. By doing this we were 
trying to select problems whose accurate solution required accurate perception of 
Euclidean distances on the floor. Recall that the subject’s retinal image is a perspective 
projection of the floor; we wanted to make sure that the subjects were solving the 
problems on the floor, rather than the problems on their retinal images. Six subjects 
were tested in the real TSP and five in virtual TSP (the following subjects were naive: 
TS, MB, OK, JS, ER, and RJ; two authors [LA and ZP] were tested in both). All subjects 
were tested with the same problems, but in a random order. The subject’s task was to 
collect the tennis balls in the order that produced as short a tour as possible. The same 
problems, involving the same city positions, were used in the virtual reality replication 
of the experiment. Considering the fact that the FLEX has horizontal dimensions of 
roughly 3 × 3 meters, small movements of the subject around the simulated tennis 
court could be executed by walking around the FLEX. Larger movements could be 
simulated by using a wand. The subject could also use the wand to rotate the scene 
around her. The subject produced the tour by collecting the tennis balls. As a result, 
in the case of the real floor, the subject could not undo a move or start over if she did 
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not like the tour produced so far. A similar experiment, in which subjects solved TSP 
with 5 to 10 cities in a real room measuring 6 × 8 meters has recently been reported 
by Wiener, Ehbauer, and Mallot (2009). In that study, the 25 grid positions were ex-
plicitly given by cardboard boxes. These boxes provided quite reliable depth cues for 
estimating distances. As a result, the depth reconstruction part was probably easier, 
compared to our experiment.

4.1.2. Results and Discussion

Tour errors for the real and virtual settings along with standard errors of the mean are 
shown in Figures 6 and 7. Consider first the TSP on the real floor. Except for one subject (MB), 
who missed a ball in a few problems with 10 and 20 cities, the performance of all subjects 
was quite consistent and similar to the performance, reported in previous studies, where 
the problems were presented on a computer monitor. Large errors in the case of MB were 
caused by the fact that he started solving the TSP problems without looking around. As a 
result, when he was ready to finish a tour, and return to the starting city, he realized that 
there was one additional tennis ball (city) to collect. The subject was not allowed to “go 
back” and correct the tour because the visited cities were not there anymore (the visited 
tennis balls had already been collected). As a result, the subject’s tour was substantially 
longer than the optimal tour. This did not affect substantially the proportion of optimal 
solutions for this subject, but it did affect his average error.

The proportion of optimal solutions (not shown on graphs) ranged from 60 to 90% 
for 5 cities, 50 to 80% for 10 cities, and 0 to 30% for 20 cities (recall that there were only 
10 instances of a TSP for each problem size. As a result, the estimates of the proportions 
are not very reliable). These numbers are very close to the proportion of optimal solutions 
when the problems were presented on a computer screen (Pizlo et al., 2006). The average 
errors in the case of TSP on the real floor are also very close to the errors of solutions when 
the problems were presented on a computer monitor. In our study (Pizlo et al., 2006), the 
average errors of several subjects ranged between 0 and 1% for 10-city problems, between 
1 and 4% for 20-city problems, and between 2 and 5% for 50-city problems. These results 
imply that the errors in reconstructing the actual distances from perspective images did 
not substantially (if at all) affect the quality of the solutions and, furthermore, that the 
subjects were able to integrate the visual information across the visual field. Apparently, 
accurate depth perception was not critical in solving TSP.

In order to evaluate the effect of errors in reconstructing Euclidean distances on the 
floor, we performed a simulation experiment in which the Concorde and our pyramid 
algorithms solved TSP problems that were compressed along the y-axis by a factor cor-
responding to cos(α), where α ranged from 10 to 80 degrees. Compressing the problem 
by cos(α) corresponded to slanting the computer monitor relative to the line of sight by 
α. The error in the TSP solution (see Figure 8) was evaluated by comparing the order of 
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cities in the solution of the compressed version of the problem to the order of cities in 
the optimal tour of the original version of the problem. It can be seen that the solutions 
are quite robust in the presence of compression of the problem. Compressing the y-axis 
by 13% (cos(30 deg)), which corresponds to errors in judging distances on the floor im-
plied by a misestimation of the slant of the horizontal floor by about 1 degree (see our 
discussion of Figure 3 in Section 1), led to average errors in TSP solution of only about 
1% for both the Concorde and our model. This is not completely surprising considering 
the fact that a TSP problem is solved for discrete set of cities. Namely, the order of cities 
in the solution, say, ABCD, will change to ACBD only if d(AB) + d(CD) > d(AC) + d(BD). If 
the rest of the tour stays the same, then the percentage error for the entire tour is likely 
to be much smaller than the percentage error in the two edges that were involved in 
changing the tour.

Figure 6. Human performance in 2D TSP.

a) Subjects’ performance in reality.

b) Subjects’ performance in VR.
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There is also another interesting implication of the results shown in Figure 8. When 
a problem solver does not have access to accurate distances between pairs of cities, but 
only to approximate distances (which is a rule rather than exception in real life), there is 
almost no difference between the quality of solutions produced by an optimal TSP solver 
and those produced by our model. In the presence of errors in the data, all solutions are 
approximate. It follows that it is unnecessary to use an optimal TSP solver, whose com-
putational complexity is exponential. One can use our model, whose complexity is linear 
with respect to the number of cities and which is able to produce essentially equivalent 
approximate solutions as the optimal solver. We could say, therefore, that when the data 
are not known exactly, there is no practical difference between P versus NP problems. The 
fundamental difference between these two classes of problems has primarily theoretical 
significance.

Figure 7. Human and model performance in 2D TSP.

a) MST pyramid model’s performance with di�erent values of parameter r.

b) Average performance of subjects and the performance of the MST pyramid model for r = 3.
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It is important to point out that performance of five out of six subjects in the case 
of real TSP problems was high despite the fact that they could not undo movements or 
start over. This is consistent with our observations from experiments where the TSP was 
solved on a computer monitor, namely, that such corrections are rarely made. Once the 
subject decides how the problem should be solved, the subject executes the plan. The 
global aspects are decided first, and local decisions about the tour are not likely to affect 
the global features of the path.

Results in the virtual reality replication of this experiment are similar, although there 
was more variability both within and across subjects. Specifically, the proportion of op-
timal solutions ranged from 50 to 80% for 5 cities, 50 to 90% for 10 cities, and 0 to 20% 
for 20 cities. The average errors for individual subjects are shown in Figure 6b. The range 
of errors was slightly larger in virtual reality than in the real version of TSP. Specifically, 
the maximal average error was 3% for 5 cities, 4% for 10 cities, and 6% for 20 cities. These 
maximal errors are only slightly worse than those in the case of TSP on the real floor and 
TSP on a computer monitor. These results suggest that the virtual reality environment is 
a reasonable representation of the real environment.

4.2. Experiment 2: 3D TSP

4.2.1. Method

We tested human and model’s performance on 3D TSP, that is, TSP in which the cities are 
distributed in a volume. To the best of our knowledge, human subjects have never been 

Figure 8. Mean and standard deviation of errors produced by an “optimal” algorithm 
(Concorde) and by our pyramid algorithm (BP) under different angle of projection α. Both 
solved slanted TSP problems, but their performance was evaluated by using the original 
(not slanted) versions.
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tested with such problems. Results of this experiment have important implications for 
models of human performance. At this point, there are three such models. The first is the 
pyramid model described here, the second is the convex-hull model with cheapest inser-
tion (MacGregor et al., 2000), and the third is the crossing avoidance (van Rooij, Stege, & 
Schactman, 2003). Only the pyramid model can generalize to 3D space. The convex-hull 
in 3D is not a tour, but a surface. Even if one determines all relevant edges connecting 
the neighboring points on this surface, it is still not clear in which order they should be 
visited to produce a tour. In other words, there is no natural way to walk around a surface 
like a sphere. It follows that there is no natural extension of the convex-hull model to 3D 
space. Crossing avoidance cannot be a useful strategy either, because a polygonal line con-
necting C cities in 3D space is very unlikely to produce self-intersection. If either of these 
two models was a plausible explanation of how humans solve TSP, the tours produced by 
humans, in the case of 3D TSP, should be comparable to random tours.

Only a virtual 3D version of the TSP was used because it is difficult to place multiple 
points or objects in a real 3D space. Spheres with diameter of 15 centimeters were gen-
erated within a cube 3 × 2 × 3 meters in the FLEX virtual reality system at Purdue. The 
number of cities (problem size C ) was 6, 10, 20, and 50. There were 10 randomly generated 
TSP problems for each problem size. The viewing was binocular and the subjects were 
free to move. The subject used a 3D pointer to indicate the order in which the cities were 
visited. Once the city had been visited, it changed color. The tour produced so far was 
marked by a polygonal line. The subject could undo a move recursively. Six subjects were 
tested. All of them had extensive experience with virtual reality systems. Two subjects (RJ, 
RP) were naive.

4.2.2. Results and Discussion

Proportion of optimal solutions (not shown on graphs) ranged from 50 to 100% for 6 cit-
ies, and from 30 to 40% for 10 cities. Only one subject found an optimal solution for only 
one 20-city problem. None of the 50-city problems were solved optimally by any of the 
subjects. These numbers are systematically lower than those for the 2D TSP (see above). 
For example, for 10-city problems, the proportion of optimal solutions ranged from 60 
to 90% in the case of problems shown on a computer monitor and from 50 to 80% in the 
case of real 2D TSP problems. Average solution errors of the five subjects tested on a 3D 
TSP are shown in Figure 9. Note that these errors are only slightly higher than those for 
2D TSP in a virtual environment (errors of one subject, RJ, were substantially higher: 5% 
for 10-city problems, 10% for 20-city problems, and 25% for 50-city problems and are not 
shown in this figure).

These results contrast with subjective reports of the subjects. Whereas 2D TSP appears 
natural and easy, 3D TSP appears very unnatural and difficult. The subjects reported that 
they had very little confidence in what they were doing in the case of 3D TSP and that they 
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expected their tours to be no better than random tours. This was clearly not the case. For 
example, an average error of a randomly generated tour for 10-city TSP was 85%. In con-
trast, the average error of our subjects in the case of 10-city 3D TSP was less than 3%. The 
fact that 3D TSP appears unnatural is not surprising because it is unnatural. Human beings 
are used to solving 2D visual navigation tasks on surfaces, such as floors and ground. 3D 
visual navigation tasks (diving or flying) have not been common, if present at all, during 
the last 200,000 years of human evolution. Nevertheless, the visual (mental) mechanisms 
that are involved in solving 2D navigation tasks can be applied to 3D tasks as well.

4.3. Model Fitting

What is the nature of the mental mechanisms involved? According to our computational 
model, human subjects solve TSP problems by means of:

• hierarchical clustering

•  top-down process of coarse-to-fine approximations to the solution tour

Our computational model is described in Section 5. It has been designed for 2D TSP 
problems. However, the fact that the model operates on graphs makes it suitable for 3D 
TSP problems as well. In other words, no modification was needed in order to apply the 
model to 3D problems. Will the model be able to account for human performance in 2D 
as well as in 3D problems?

The model’s averaged errors for several values of r, which represents the extent of 
local search, are shown in Figures 7a and 10a. In Figures 7b and 10b human performance 
averaged across subjects is plotted together with performance of the model for r = 3, 
which is the value that provides the best fit to the subjects’ results. Consider first the fit 
in the case of 2D problems. The model’s performance is slightly but systematically better 

Figure 9. Human performance in 3D TSP.
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than that of the subjects. There are at least two sources of this difference. First, in the case 
of TSP on the real floor, there was one subject who produced substantially higher errors 
because he forgot about one tennis ball in several problems. This affected the average 
plotted in Figure 7b. Second, recall that the subjects had to visually reconstruct the dis-
tances on the floor before solving the problems. The model, on the other hand, was given 
positions and distances without any errors. Results of our simulation experiment shown in 
Figure 8 indicate that the effect of reconstruction errors would lead, on average, to a 1% 
increase in the solution errors. We can conclude, therefore, that if the effect of these two 
factors were eliminated, the model would have fitted the subjects’ data very well. Next, 
consider 3D problems. It can be seen that the model’s performance is quite close to that 
of the subjects. In particular, the model’s errors in the case of 3D TSP are systematically 

Figure 10. Human and model performance in 3D TSP.

a) MST pyramid model’s performance with di�erent parameter r.

b) Average performance of subjects and the performance of the MST pyramid model for r = 3.
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larger than those in the case of 2D TSP. This result resembles the results of the subjects. 
What is different in the 3D case is that now the value of parameter r has substantial effect 
on the model’s performance. Apparently, in the 2D case, all of the “work” is being done 
by the clustering operation and the coarse-to-fine tour refinement, and the effect of local 
search is minimal. This is not true in the 3D case. Here, the extent of local search matters 
and cluster size of three seems to best fit the results of the subjects. The fact that local 
search is important in a 3D TSP seems reasonable—there is an additional dimension, 
compared to the 2D case, that has to be analyzed. For example, cities on the perimeter of 
a unit circle in 2D is a trivial TSP problem, whose solution is the order of cities along the 
perimeter, whereas cities on the surface of a unit sphere is far from a trivial problem. It 
is simply not clear how to produce an optimal tour on the surface of a sphere. Note that 
three points are always co-planar in a 3D space. The fact that the model with r = 3 provides 
best fit to the subjects’ data in 3D TSP suggests that the subjects are solving a 3D TSP by 
using piece-wise planar approximations. The important fact is that the same model can 
account quite well for the results of the subjects in 2D and 3D problems.

5. Pyramid Model

Many combinatorial optimization problems have problem spaces that are extremely 
large, so much so that the states of these problems cannot all be represented at once in 
the human memory (the number of tours in a 17-city TSP is larger than the number of 
neurons in the human brain). It seems quite obvious, however, that an effective solution 
of a problem, a solution that is more sophisticated than that produced by random search, 
must somehow involve information about the whole problem. The only plausible approach 
in such cases is to use global but coarse information about the entire problem space and 
fine, detailed information only about the current state. In fact, the global versus local 
distinction is not sharp. Instead of two levels, one global and another local, a set of levels 
with systematically varying degree of locality and globality could be used.

The pyramid representation fulfills these requirements. Our pyramid model uses lo-
cal to global and global to local processes to find a good solution (τapp), approximating 
the E-TSP. The main idea is to use:

•  bottom-up process to create the problem representation and reduce the size of 
the input

•  top-down refinement (search) to find an (approximate) solution

A pyramid representation (Figure 11a and b) consists of a set of layers, each layer 
involving a number of processors that are assumed to work simultaneously and, to a 
large extent, independently. Each processor has information about one part of the im-
age, called its receptive field (RF). The bottom layer (layer 0) corresponds to the level of 
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receptors on the human retina. The number of processors in the second layer (layer 1) 
is smaller by a factor of λ—this factor is called a reduction ratio, and it is greater than 1. 
Specifically, one processor (a parent) receives input from λ children in the layer below. It 
follows that receptive fields on the second layer are larger by a factor of λ than those on 
the first layer. Similarly, the number of processors on the third layer is again smaller by a 
factor of λ , and so on, until the top layer is reached, where there is only one processor. 
Processors on higher layers receive only some information about the content of their 
receptive fields. The number of levels in the pyramid representation with the base size I 
is equal to logλ (| I |) (Figure 11). This implies that a regular pyramid representation is built 
in O[log(diameter(I))] parallel steps (Jolion & Rosenfeld, 1994).

In our model, the TSP input is represented by graphs. A level (k) of the graph pyramid 
consists of a graph Gk . Moreover, each vertex in the graphs pyramid is attributed.

5.1. Irregular Graph Pyramid Model

The TSP problem is recursively simplified in the process of hierarchical clustering. The 
centers of the clusters are used in lieu of the cities. Close to the top of the pyramid repre-
sentation, the problem is trivial because it has only two or three cities. The solution of this 
trivial problem is then refined in a coarse-to-fine process of successive approximations. 
The main steps of the algorithm are shown in Algorithm 1 and discussed in more detail 
in Sections 5.1.1 and 5.1.2.

5.1.1. Bottom-up Simplification Using an MST Graph Pyramid

The most fundamental operation in producing hierarchical representation is hierarchical 
clustering. Points, features, and states in a problem can be clustered based on their similari-
ties and proximities. Hierarchical clustering, and the resulting hierarchical representations, 
called pyramids, seem to be essential in perception and problem solving. Clustering is a 
task of finding “natural” groupings. The first question is how natural groupings are deter-
mined. In other words, what makes points in a cluster more like one another than points 

Figure 11. Multi-resolution pyramid.
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in other clusters? This question leads to two other, more specific ones (Duda, Hart, & Stork, 
2001): how to measure the similarity between points and features, and how to evaluate 
a partitioning of the points and features into clusters. Similarity (dissimilarity) measures 
are usually related to distances. When clusters are formed based on distances, it is natural 
to expect that the distances among points within a cluster are smaller than the distances 
among points in different clusters. But similarity could reflect some abstract properties that 
cannot be directly translated to distances. In such cases, clustering based on similarities 
may or may not reflect the relations among distances (Wilson & Keil, 1999).

The simplest example of clustering is that in the spatial domain. Spatial clustering 
has been a subject of studies of spatial memory (McNamara, Hardy, & Hirtle, 1989) as well 
as human performance in solving TSP (Pizlo et al., 2006; Haxhimusa et al., 2007; Xiaohui & 
Schunn, 2007, 2006; Wiener, Ehbauer, & Mallot, 2009). Both groups of studies clearly imply 
that humans can perform clustering, but the underlying mechanisms remain unknown. 
Clustering techniques are used in the computer science community to solve TSP as well 
(Climer & Zhang, 2006).

Hierarchical partitioning is one of the best known methods of clustering in a top-
down direction (Duda, Hart, & Stork, 2001; Lance & Williams, 1967), while agglomerative 
clustering works in the bottom-up direction. MST can be used to perform the latter (Duda, 
Hart, & Stork, 2001).

In Graham’s model (Graham, Joshi, & Pizlo, 2000), clusters are not explicitly repre-
sented. Instead, the centers of the clusters are used in the E-TSP solution process. The 
centers are modes (peaks) of the intensity distribution produced by blurring the image. 
To make clusters explicit Pizlo et al. (2006) used an adaptive model in which top-down 
partitioning of the plane along the axis of Cartesian system was used. In the work of 
Haxhimusa et al. (2007) the clusters were built adaptively in a bottom-up manner. The 
problem representation in these studies was represented by a hierarchical tree (see Fig-
ure 11). Similarly to the work of Haxhimusa et al. (2009), we use the greedy technique to 

Algorithm 1—Approximating E-TSP Solution with a Pyramid

1:  partition the input space by preserving approximate location: create the input 
graph—G0

2:  reduce number of cities bottom-up until the graph contains a couple of vertices: 
build the problem representation—Gk , 0 ≤ k ≤ h

3:  find the first approximation of the TSP tour at the top of the pyramid—τa

4:  refine solution top-down, until all cities at the base level are processed: find the 
approximate solution of the E-TSP—τapp.
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create clusters of the cities; specifically, we are motivated by the MST Borůvka’s algorithm 
(Neštřil, Miklova, & Neštřilova, 2001), since it naturally creates hierarchical representations 
and is adapted to the input data.

For a given graph G0 = (C, N, wv, we) the vertices are hierarchically grouped into 
trees, as given in Algorithm 2. The idea of Borůvka step is to perform greedy operations 
like in Prim’s algorithm (Prim, 1957), in parallel, over the entire graph. The trees (clusters) 
are not allowed to contain more than r ∈ N+ cities. If each tree contains at least two cit-
ies, the pyramid has a logarithmic height (Kropatsch et al., 2005) and it follows that the 
reduction factor λ is 2 ≤ λ ≤ r.

An example of how Algorithm 2 builds the graph pyramid (all levels) is shown in 
Figure 12b. Each vertex finds the edge with the minimal weight (solid lines in Figure 12b 
1-5 and Figure 13a). These edges create trees of no more than r (in the figure r = 3) cities. 
Note that some vertices do not have solid lines. They cannot be connected to other clusters 
because of the limit on the size of the cluster (r). The trees produced at this stage are then 
contracted to the parent vertices (shown in Figure 12b). Different levels of the pyramid are 
represented by different vertex colors and sizes. The parent vertices together with edges 
that are not part of the contraction (dotted lines shown in Figure 13a) are used to create 
the graph of the next level. The new parent vertex’s attribute can be the center of gravity 
of its child vertices, or the position of the vertex near the center of gravity. Note that by 
preserving the relations between the children and their parents, we create a hierarchical 
representation of the problem (red solid lines shown explicitly for the last two levels of 
the pyramid in Figure 13). The algorithm iterates until there are s vertices at the top of 
the pyramid, and since s is small a full search can be employed to find an optimal tour τa 
at the top layer quickly.

Algorithm 2—E-TSP Problem Representation Reduction by an MST Graph Pyramid

1:  Input: Attributed graph G0 = (C, N, wv , we), and parameters r and s

2:  k ← 0

3:  repeat

4:   ∀vk ∈ Gk find the edge e’ ∈ Gk with minimum we incident into this vertex

5:   using e’ create trees T with no more than r vertices

6:   contract trees T into parent vertices vk + 1

7:   create graph Gk + 1 with vertices vk + 1 and edges ek ∈ Gk \ T

8:   attribute vertices in Gk + 1

9:   k ← k + 1

10:  until there are s vertices in the graph Gk + 1.

11:  Output: Graph pyramid—Gk, 0 ≤ k ≤ h.
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5.1.2. Top-down Approximations of the Solution

The tour τa found at the level h of the graph pyramid is used as the first approximation of 
the TSP tour τapp . This tour is then refined using the pyramid representation already built 
(τa 1, τa

2, . . . ). Similarly to Pizlo et al. (2006) we use the simplest refinement, the one-path 
refinement (Haxhimusa et al., 2009). The one-path refinement process starts by choosing 
(randomly) a vertex v in the tour τa (say vertex v1 in Figure 12c and Figure 13b). Using the 
parent-child relationship, this vertex is expanded into the sub-graph G’h–1 ⊂ G’h–1 from 
which it was created, that is, its receptive field in the next lower level (encircled verti-
ces in Figure 13b). In this sub-graph a path between vertices (children) and non-refined 
vertices is found that makes the overall path τa 1 the shortest one. For example, in Figure 
12b and Figure 13b, the shortest tour τa 1 is shown by a solid line and is found by choosing 
the shortest path between the start vertex v ’ and the end vertex v ’ (non-refined vertices) 
and going through all the vertices (children of v1) of the receptive field of v1, RF(v1). Since 

Figure 12. Steps of MST-based pyramid algorithm for solving TSP.

a) Input: Cities

b) Bottom-up simpli�cation — creating the pyramid represen tation

1) level 0 2) level 1 3) level 2 4) level 3 5) top: level h

c) T op-down re�nemen t of tours τa simulating the human fovea - expansion of paren t t o its children

initial tour τa 1) re�ning v1 2) re�ning v2 3) re�ning v3 3) re�ning v4
v1 v2

v
v

v3 v4

...
τ 1a τ 2a τ 3a τ 4a

d) Output: TSP tour τapp
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the number of vertices (children) in G’h cannot be larger than r (in Figure 12 example r = 3), 
a complete search is a reasonable approach to find the path with the smallest contribu-
tion in the overall length of the tour τa 1. Note that the edges in τa 1 are not necessarily the 
contracted edges during bottom-up construction.

The refinement process then chooses one of the already expanded vertices in G’h–1, 
and expands it into its children at the next lower level Gh−2, and the tour τa

2  is computed. 
The process of tour refinement proceeds recursively until there are no more parent-chil-
dren relationships, that is, vertices at the base of the pyramid (level 0) are reached. After 
arriving at the finest resolution, the process of refinement continues by taking a vertex 
in the next upper level in the same cluster, and expanding it to its children. Note that the 
process of vertex expansion toward the base level emulates the non-uniform resolution 
of the human retina. The tour is refined to the finest resolution in one part whereas other 
parts are left in their coarse resolution representation. The process converges when all 
vertices in the pyramid have been “visited.”6 More formally the steps are depicted in Al-
gorithm 3 and Procedure 1, following Haxhimusa et al. (2009).

Other refinement approaches can be chosen as well (Haxhimusa et al., 2009). Note 
that any of the vertices can be chosen as the starting point for the solution process. Dif-
ferent starting points are likely to lead to different tours. The choice of the starting point 
may account, at least in part, for individual differences in human solutions.

5.2. Algorithm Complexity of the Pyramid Model

The bottom-up process uses a model of simplification that is motivated by MST Borůvka’s 
algorithm. Using a fully connected graph to represent the input instance, it follows that 
the bottom-up simplification algorithm has at least O(|C |2) time complexity (Papadimitiou 

6 A demo is given in http://spiderman.psych.purdue.edu/yll/fovea_pyramid_tsp_demo.php.

Figure 13. Graph pyramid representation and the first TSP tour approximation (from 
Figure 12).

G h − 1

G h τa
v1

v
v

τ 1a G h − 1
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Last two levels of the pyramid First approximation τ 1a of τa .
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Algorithm 3—E-TSP Solution by an MST Graph Pyramid Representation

1:  Input: Graph pyramid Gk , 0 ≤ k ≤ h and the tour τa

2:  τapp ← τa

3:  v ← random vertex of τapp

4:  repeat

5:   refine(τapp , v) /* refine the path using the children of v. See Prc. 1 */

6:   mark v as visited

7:   repeat

8:    if v has unvisited children then

9:     v ← first unvisited child of v in τapp /* given an orientation */

10:    else if v has unvisited siblings then

11:     v ← first unvisited sibling of v in τapp /* given an orientation */

12:    else if v has a parent, that is, v is not a vertex of the top level then

13:     v ← parent of v

14:    else

15:     v ← 

16:    end if

17:   until (v not visited) V (v = )

18:  until v = 

19:  Output: Approximation E-TSP tour τapp .

Procedure 1—refine(τapp , v): refine a path τapp using the children of v

1:  Input: Graph pyramid Gk, 0 ≤ k ≤ h, the tour τapp , and the vertex v.

2:  (c1, . . . , cn) ← children of v /* vertices that have been contracted to v */

3:  if n > 0 /* v is not a vertex from the bottom level */ then

4:   vp , vs ← neighbors of v in τapp /* predecessor and successor of v */

5:   p1, . . . , pn ← argmin{length of path {vp , cp1, . . . , cpn , vs}} such that p1, . . . , pn  
 is a permutation of 1, . . . , n /* optimal order of new vertices in the tour */

6:   replace path {vp , v, vs} in τapp with path {vp, cp1, . . . , cpn, vs}

7:  end if

8:  Output: refined TSP tour τapp .
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& Steiglitz, 1998). This time complexity of Borůvka’s algorithm can be reduced easily to 
O(|N | log |C |) if instead of the fully connected graph one uses a planar graph, for example, 
Delaunay triangulation.7 Note that the presented Algorithm 2 can be parallelized lead-
ing to complexity O(log |C |) with O((|C |+|N |)α(|N |, |C |)/ log(|C |)) processors (Cole, Klein, & 
Tarjan, 1996), where α(|N |, |C |) is the Ackermann-Péter function.

The complexity of the top-down process depends on the choice of the parameter 
r. The number of levels of the pyramid depends on r and is h = logr (|C |); thus the overall 
number of vertices in the pyramid is (1+ r

1 + r
1  + · · · + r

1  )|C | ≤ 2|C |. In our current imple-
mentation the search time within each cluster is done in constant time, O(1). Finding the 
best path within r cities in an exhaustive search is r !. Thus the overall time complexity of 
the top-down process is O(k|C |), where k is a small constant.8 The parameter r has to be 
chosen as a compromise between the quality of the tour produced and the amount of 
search performed. In our experiments r = 3 led to results similar to that produced by hu-
man subjects. Of course, theoretically one can use r = |C |, which would lead to the brute 
force algorithm.

The number s ∈ N+ of vertices in the top level of the pyramid is chosen so that an 
optimal tour can be found easily (s = 3, or s = 4). Note that larger s means a shallower 
pyramid and larger graph at the top, which also means higher time complexity to find 
the optimal tour at the top level. Thus r and s are used to control the tradeoff between 
the speed and quality of solution.

6. Conclusion

We performed two psychophysical experiments in which the subjects solved the TSP prob-
lems on a real and simulated floor, as well as in a 3D volume. The results showed that the 
subjects’ performance was quite similar to that on a computer monitor. These results were 
modeled by our new pyramid algorithm, in which hierarchical clustering was performed 
by building the MST. The same model was able to account for the psychophysical results 
in 2D and 3D spaces. This was possible because the model uses graph representations 
of the problems. As a result, the 2D and 3D problems are treated in the model in exactly 
the same way. This fact opens a possibility for using our MST pyramid model to other 
problems, which are not spatial. Specifically, most, if not all non-spatial problems, such as 
theorem proving, can be represented by graphs, with nodes representing concepts and 
edges representing relations. Once a graph is constructed for a given problem, it should 
be possible to build a graph pyramid and then plan a solution by solving the shortest path 
problem in a coarse-to-fine direction. In fact, this kind of global-to-local approach has been 
proposed by Lakatos (1976) as a typical way of proving theorems by mathematicians.

7 |C | is the number of vertices, and |N| is the number of edges.
8 The authors are thankful to Filip Pizlo for pointing this out.

2 h
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7. Appendix: TSP Used in the Experiments

Tables 1, 2, and 3 show the exact coordinates of the cities (tennis balls) that were placed in 
an area of 55 × 55 feet. These problems were used in the experiments on a real floor and 
replicated in virtual reality simulated floor (see Section 4.1 for more details). Each line in 
the table (Problem #) is a single problem. Coordinates are pairs of numbers i and j. The 0, 
0 position was the top left position of the grid.

Table 1. 5-city problems.

Problem # Coordinates of the cities i, j

1 2,1  8,0  6,6  4,10  9,9

2 2,4  8,6  6,8  7,10  6,11

3 2,0  1,1  8,1  6,3  6,7

4 1,2  9,1  3,7  0,9  6,11

5 7,0  11,0  9,3  0,8  9,11

6 1,1  11,0  8,4  6,6  6,10

7 2,0  9,2  7,6  8,10  3,11

8 7,1  10,0  8,4  1,10  10,11

9 0,3  6,2  2,6  9,6  2,8

10 6,1  11,0  8,6  10,8  6,11

Table 2. 10-city problems.

Problem # Coordinates of the cities i, j

1  4,0  2,3  7,3  11,3  0,4  7,4  4,7  7,7  2,11  7,11

2  2,0  4,0  9,0  4,3  7,4  4,7  1,8  9,9  4,10  9,11

3  4,0  6,0  2,2  9,2  7,4  3,7  0,8  6,8  2,11  8,11

4  6,0  10,0  11,0  11,2  9,6  8,7  1,9  11,10 8,11  9,11

5  0,1  3,1  9,1  4,2  3,4  6,6  7,6  1,9  8,9  6,11

6  2,0  6,1  9,1  8,4  7,6  8,6  7,7  4,11  10,11 11,11

7  11,0  0,1  3,1  6,1  4,2  3,3  7,6  4,10  7,10  8,11

8  7,2  1,4  10,3  1,6  9,6  3,8  10,7  11,8  2,10  6,11

9  7,0  6,1  11,1  7,4  9,4  8,8  3,9  9,10  3,11  10,11

10  3,0  10,0  4,1  2,3  2,6  6,7  2,10  3,11  7,11  9,11
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Table 3. 20 city problems.

Problem # Coordinates of the cities i, j

1  3,0  4,0  7,0  10,0  6,1  9,1  11,1  0,2  4,3  7,4
 10,6  4,7  11,7  6,8  10,8  11,9  3,10  4,10  9,10  4,11

2  2,0  10,0  6,1  8,1  0,2  7,2  11,2  9,3  1,4  7,4
 10,4  2,6  3,6  7,7  8,8  1,9  6,10  8,10  10,10 10,11

3  0,0  3,0  4,0  7,0  11,0  3,2  8,2  9,2  9,3  8,4
 6,6  8,8  9,8  1,9  3,9  2,10  6,10  7,10  10,10 3,11

4  3,0  4,0  8,0  10,0  0,2  7,2  3,3  8,3  11,3  9,4
 11,6  7,7  10,7  3,8  8,10  0,11  3,11  4,11  7,11  10,11

5  0,0  7,0  10,0  2,1  11,1  0,2  2,2  3,2  10,3  2,4
 8,4  4,6  1,8  1,9  4,9  3,10  4,10  7,10  10,10 2,11

6  0,0  3,0  2,1  6,1  8,1  1,2  8,3  0,4  2,4  10,4
 6,6  10,6  9,7  10,7  9,9  10,9  3,10  8,10  2,11  6,11

7  7,0  4,1  11,1  1,2  3,2  7,2  8,2  10,2  6,4  7,4
 1,6  2,6  8,6  3,7  0,8  10,8  2,9  3,11  7,11  8,11

8  1,0  3,0  4,0  6,0  10,0  4,1  3,2  3,4  6,4  7,4
 11,4  2,6  4,6  6,6  8,7  6,8  9,9  2,10  7,10  1,11

9  11,0  0,1  1,1  3,1  4,1  6,1  8,1  0,3  1,3  9,3
 4,4  11,4  2,6  8,6  3,7  6,8  1,10  1,11  6,11  8,11

10  3,0  7,0  8,0  11,0  0,1  4,1  9,1  8,2  8,4  4,6
 6,8  7,8  8,8  8,9  0,10  2,10  10,10 6,11  9,11  10,11
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